Sub-millimeter fMRI at 1.5 Tesla: correlation of high resolution with low resolution measurements.

نویسندگان

  • F G Hoogenraad
  • M B Hofman
  • P J Pouwels
  • J R Reichenbach
  • S A Rombouts
  • E M Haacke
چکیده

Functional magnetic resonance imaging of the visual cortex with an in-plane resolution of 0.4 x 0.4 mm2 was performed using a simple visual stimulus resulting in clear maps of activation. A collapsing filter was used to compare these high-resolution images with low-resolution images collected during the same session. A good correspondence between the high- and low-resolution functional maps was found with respect to the center of localization of activation. However, only 20% of the size of activated areas in the low-resolution experiment was observed at high resolution, which was partly caused by the difference in signal-to-noise ratio. The high-resolution images produce signal changes much higher than the low-resolution images due to reduced partial volume effects. Additionally, the high-resolution functional maps were compared with detailed anatomical and venous information. The activated areas were predominantly observed at venous vessels within the sulci with a diameter on the order of the pixel size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...

متن کامل

High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T.

With growing interest in noninvasive mapping of columnar organization and other small functional structures in the brain, achieving high spatial resolution and specificity in fMRI is of critical importance. We implemented a simple method for BOLD and perfusion fMRI with high spatial resolution and specificity. Increased spatial resolution was achieved by selectively exciting a slab of interest ...

متن کامل

High-resolution fMRI maps of cortical activation in nonhuman primates: correlation with intrinsic signal optical images.

One of the most widely used functional brain mapping tools is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). This method has contributed to new understandings of the functional roles of different areas in the human brain. However, its ability to map cerebral cortex at high spatial (submillimeter) resolution is still unknown. Other methods such as single- and m...

متن کامل

Three dimensional echo-planar imaging at 7 Tesla

Functional MRI (fMRI) most commonly employs 2D echo-planar imaging (EPI). The advantages for fMRI brought about by the increasingly popular ultra-high field strengths are best exploited in high-resolution acquisitions, but here 2D EPI becomes impractical for several reasons, including the very long volume acquisitions times. In this study at 7 T, a 3D EPI sequence with full parallel and partial...

متن کامل

Analyzing for information, not activation, to exploit high-resolution fMRI

High-resolution functional magnetic resonance imaging (hi-res fMRI) promises to help bridge the gap between the macro- and the microview of brain function afforded by conventional neuroimaging and invasive cell recording, respectively. Hi-res fMRI (voxel volume<or=(2 mm)3 is robustly achievable in human studies today using widely available clinical 3-Tesla scanners. However, the neuroscientific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of magnetic resonance imaging : JMRI

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 1999